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SUMMARY 

This paper considers the multigrid iterative method applied to the solution of finite difference 
approximations to a linear second-order self-adjoint elliptic equation. It represents an extension of 
work by Dinar and Brandt. We compare two methods to obtain fourth-order convergence. The first is 
local error extrapolation developed by Brandt, the second is iterative improvement developed by 
Lindberg. This work considers non-separable problems, but only on a rectangular domain with 
Dirichlet boundary conditions. We consider test cases with non-smooth (i.e. discontinuous second 
derivatives) as well as smooth solutions. We also apply the multigrid method to an elliptic equation 
with non-separable coefficients which occurs in a geothermal model. In this case an analysis of the error 
fails to show any advantage in a fourth-order difference scheme over a second-order scheme. However, 
we do demonstrate that the multigrid iteration performs well on this problem. Also, this example shows 
that the multigrid iteration can be combined with iterative improvement to create an efficient 
fourth-order method for a non-separable elliptic equation which is coupled with a marching equation. 
Other work has found an advantage in this fourth-order scheme for a similar geothermal model. 

KEY WORDS Multigrid Iterative Improvement Geothermal Model Alternating-direction-implicit Tau-extrap- 
olation Higher-order-accuracy 

INTRODUCTION 

This paper is concerned with the solution of the following self-adjoint elliptic problem 

where a = a(x, y) and r = r(x,  y). Our results are restricted to a rectangular domain with 
Dirichlet boundary conditions (i.e. U = g(x, y )  on the boundary). We will assume the reader 
is familiar with the multigrid iteration for this problem as described by Brandt.' Our primary 
interest here is the solution of an elliptic equation coupled with a marching (time dependent) 
problem. Examples are the Navier-Stokes equations2 or the following porous flow pr~blern .~  

Here $(x, y, t )  determines the temperature, +(x, y, t) is the stream function and a = a($) is a 
known function of 8. Certain solutions of this system require considerable accuracy. For 
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these cases a scheme of second-order accuracy is not adequate, a fourth-order scheme gives 
much better results." Therefore this paper is devoted to a comparison of two methods which 
yield fourth-order accuracy for the elliptic equation (1). 

The first method is described by Brandt and Dinar.' They call this 'local truncation 
extrapolation' or '.r-extrapolation'. It has the appearance of Richardson extrapolation, 
however, they state that it is more general since it does not require a global expansion of the 
solution error in terms of the mesh spacing h.' The following is a brief description of 
.r-extrapolation. One of the most critical steps in the multigrid algorithm is the projection of 
the residue on the grid Mk+l (mesh spacing h k + l )  to form the right side of the difference 
equation on the M k  grid ( h k  =&+I). The equation on the M~ grid is 

(3) L k U k  = f k  = L k I ; + l U k + l + I k  ( f k + l - ~ _ k + l ~ k + l )  
k + l  

Here Lk is the finite difference approximation for the elliptic operator (1) which is defined in 
the next section. The operator I;+l is the projection from the fine to the coarse mesh. Unless 
otherwise noted, we used the simple projection which assigns the fine mesh value to the 
corresponding coarse mesh point (note that each coarse mesh point is also a fine mesh point). 
Brandt shows that the use of 'residual weighting' in this projection can improve the 
convergence rate somewhat. If we denote the solution of the differential equation by U, then 
the discretization error (i.e. truncation error) on mesh level k is defined by (here rk denotes 
the right side on mesh M k )  

L k U - r k z z . r k  

Brandt and Dinar' indicate that an estimate for this error is given by (4.3) T : + ~  where 

T : + ~  = ~ ; + ~ ( r ~ + l - - ~ ~ + l u ~ + l ) - ( r ~  - L ~ I : + ~ U ~ + ~ )  

Note that I:+lrk+l = rk,  since we do not use weighted residuals, and therefore 

'T;+l= LkI;+lUk+l-I;+1Lk+'Uk+' 

If we have an estimate of the discretization error, say ~ , k ,  then a solution of higher order 
accuracy can be obtained by solving the following equation 

~ k ~ k  - r k  z= T,k 

This is the basis for the method of deferred corrections6 and also iterative improvement.' If 
k = M  is the index for the finest mesh, then the right side of the relaxation equation for the 
next finest mesh is 

fM- l=  p4-1($4) + LM-lIg-lUM - Ig-lLMUM 

I g - y r M )  +$(LM-lIE-luM - p$lLMUM) = p - 1  +$p&1 

M 

If instead we use 

then on the mesh level I = M -  1 the relaxation equation becomes 
L M - ~ ~  - +W-l _I M-1 

- 7, 

and we have a correction which should yield fourth-order accuracy on the M -  1 mesh level. 

developed by Lindberg? This requires first the solution for the second-order equation 
As an alternative we will also describe results obtained from iterative improvement as 

LMu = rM 
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Then a fourth-order operator L y  is used to obtain a correction, but only on the finest mesh, 
from the following equation , 

L'vM +L,MuM = 2rM 

Lindberg shows that the solution v", again obtained with the second-order operator L", has 
fourth-order accuracy. This method requires two solutions using the second-order operator. 

The numerical experiments use a rectangular mesh (xi, yj) where 1 s  i 5 m2"-l, 1 5j 5 
n2"-l with equal spacing in each direction. Usually 1 5 m, n 5 3. Here M is the index of the 
finest mesh level. The finite difference operator L" of second order is defined by 

L"u = (ai+*,j(ui+l,j - qj)-ci-3,j(uij - U,-l,j))/Ax2 
+ (ai,j++(ui,j+l- &j> -ai,j-$(q,j - ui,j-l))/AY 2 

In all our experiments Dirichlet boundary conditions were used. In one test case we used a 
discontinuous function a(x, y). However, the discontinuity was not severe, and therefore the 
techniques developed by Dendy et a1.l' for the multigrid method with discontinuous a(x, y) 
were not needed. 

THE MULTIGRID ALGORITHM 

In this section we will describe the variants of the multigrid method which we compared. All 
but the second are taken from Dinar's thesis.' We used the Full Approximation Scheme 
(FAS), thus we solved for the full solution uk on each grid rather than solving for a 
correction to the solution on the finer grids. The interpolation operator I t -% was the linear 
operator except for the interpolation to the finest grid Iz-l which will be discussed below. 
The operator It-' simply assigned the fine mesh value to the course mesh point, that is 
residual weighting was not used. 

In the first two schemes a cycling algorithm was used, that is the iteration started on the 
finest mesh level. In the remaining schemes the full multigrid scheme was used which solved 
the problem on mesh level k = 2, then solved on each finer level to k = M. Cubic (four-point) 
interpolation was used to obtain an initial guess on level k from the final approximation on 
level k - 1. The details of this algorithm are given in several papers by Brandt and also in 
Dinar's thesis.' We proceed to a description of the eleven schemes, each of which corres- 
ponds to a column in Table I. 

1. This is a fixed cycling algorithm starting on the finest mesh. On the downward pass two 
relaxations are done on each mesh level below the finest level except on level one where four 
are used. On the pass back up only one relaxation is performed. On the highest (or finest) 
level only one relaxation is done per cycle. For a case with four mesh levels the number of 
relaxations on each mesh level through one complete cycle is the following 

(2 * 3 , 2  * 2,4 * 1 , 1  * 2 , 1 *  3,. 1 * 4) 

Here 2 * 3 denotes two relaxations on the third level. In addition, at the beginning of the fist 
cycle two relaxation sweeps are used at level 4. At the end of the cycle, after the relaxation 
on the finest level, a check of the residue is made. If this residue is less than a given input 
tolerance the iteration is terminated. The residue is computed using a weighted maximum 
norm. The weights are 

W(x, y) =h4in (x -x,, xb -x)  * Min (y - y,, yb - y) 

where x,, xb and y,, yb are the edge co-ordinates of the rectangular domain. This weight 
function is normalized to a maximum value of one on the rectangle. The relaxation sweeps 
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first along rows from left to right (inner loop), then from the bottom to the top of the mesh. 
The ?--extrapolation is not used in this first scheme so that this scheme is accurate to second 
order. The results of running this scheme are shown in Table I for three test cases. For each 
case and scheme four numbers are given. The top number is the relative error in the L, norm 
(Euclidean norm) with a unity weighting (i.e. no weighting, w(x, y ) =  1). By error we mean 
the difference between the mesh values and the solutions of the differential equation. 
Therefore this error does not approach zero as the number of iterations increases, but will go 
to zero with the mesh spacing. The second number is the relative error in the maximum 
norm. The third number is the maximum norm of the error measured on every other grid 
point, that is measured on mesh level M -  1. This third number is of significance for some of 
the later schemes. Thus these three errors are 

The fourth number is the computing time on the DEC KL1091 at the Colorado School of 
Mines. These runs were all made using single precision arithmetic. 

2. The second scheme uses iterative improvement to obtain fourth-order accuracy. This 
requires two solutions of the second-order equation each of which is obtained using the same 
multigrid iteration as in the first scheme. For both the first and second scheme the residue 
tolerance is taken small enough so that it has no significant effect on the error. The 
fourth-order approximation of the differential equation required by the iterative improve- 
ment uses six-point approximations of the derivatives at mesh points adjacent to the 
boundary and five-point approximations elsewhere. The self-adjoint form is not used for the 
fourth-order operator, thus the x-term is a difference approximation of 

3. The third multigrid scheme is one described by Dinar.’ Unlike the cycling algorithm 
used in the first two schemes this is an FMG algorithm which starts on the second mesh level 
( k  = 2). It is a double cycle which uses .r-extrapolation. On this level a zero initial guess is 
used and the solution is obtained by a dynamic cycling algorithm similar to ‘cycle C’.’ To 
obtain the solution on the third level, the second-level solution is interpolated to the third 
level using cubic interpolation. This provides an initial guess on the third level. Then a fixed 
‘double cycle’ iteration is used to obtain an approximate solution on the third level. The 
process continues in this manner to higher grid levels. Each cycle moves down through the 
grid levels using two relaxation sweeps per level (except four sweeps on the lowest level). 
Then the iteration moves back up to the level immediately below the finest level, down 
again, then back up to the finest level. On this last move up to the finest mesh only one 
relaxation sweep is used per level. Each of these cycles uses approximately 4.2 work units, 
that is 4.2 relaxation sweeps on the finest mesh not counting the work required to interpolate 
between grid levels. Note that there is no final relaxation on the finest mesh. 

The number of relaxations at each level for a grid wiih four levels is illustrated by the 
following two cycles on the fourth level 

2 * 4,2 * 3,2 * 2,4 * 1,2 * 2,2 * 3,2 * 2,4 * 1,1* 2,1* 3 

___ 2 *4,2 * 3,2 *2 ,4  * 1,2 * 2,2 * 3,2 * 2,4 * 1,1* 2,s  * 3 

Also, ?--extrapolation is used for k>2. The same cycle is repeated twice except that the 
?--extrapolation correction is done after the underlined relaxation on the second cycle. This 
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yields a fourth-order solution on the level below the finest level. Also the final relaxation on 
the fine mesh is not performed. Instead a high order interpolation is used to transfer the 
solution from mesh level 3 to level 4 after the final relaxation on level 3.  Note that this 
interpolation is done only on the second cycle, the interpolation from level 3 at the end of 
the first cycle to level 4 to start the second cycle is linear. Also note that this high order 
interpolation is only used to obtain the solution on the finest mesh on the last FMG step. If 
there are 5 mesh levels, then this interpolation is used only to obtain the final solution on the 
fifth level, it is not used when FMG obtains a solution on the fourth level, instead linear 
interpolation is used to pass from the third to fourth level. Then a four-point cubic 
interpolation is used to obtain the initial guess for the FMG solution on the fifth level. For 
this third scheme the interpolation uses the nearest six coarse mesh points to interpolate to a 
fine mesh point. Thus the interpolation has sixth-order accuracy (i.e. O(h6)). 

4. This scheme is the same as the third except only a single cycle is used, that is the 
relaxation sweeps through the mesh levels are defined as follows 

2 *4 ,2  * 3,2 * 2,4 * 1,2 *2,2 * 3,2 * 2,4 * 1,1* 2,1* 3 

The .r-extrapolation correction is made after the first pair of relaxation sweeps on the fine 
mesh. 

5. This scheme is the same as the double cycle of scheme three except that a four-point, 
fourth-order accurate interpolation is used to obtain the final values on the fine mesh. 

6. This scheme is the same as the double cycle of scheme three except that linear 
interpolation followed by a single relaxation is used to obtain the final values on the fine 
mesh. The relaxation sweeps through the mesh levels as follows 

2 *4,2 * 3,2 * 2,4 * 1,2 * 2,2 * 3,2 * 2,4 * 1,1* 2,1* 3 
2 * 4,2 * 3,2 * 2,4 * 1,2 * 2,2 * 3,2 * 2,4 * 1,1* 2,1* 3,1* 4 

- 

__ 
The 7--extrapolation is used. 

sweep is 
7. This is the same as scheme six except that only a single cycle is used. The relaxation 

2 *4,2 * 3,2 * 2,4 * 1,2 * 2,2 * 3,231: 2.4 * 1 ,1*  2,1* 3 ,1*4  

The 7-extrapolation is used. 
8. This scheme uses the double cycle sweep without 7-extrapolation in a solution by 

iterative improvement. The FMG algorithm is used with the same fixed cycle as in scheme six 
(illustrated for k = 4) for levels three and higher ('cycle C' is used on level two}. This FMG 
algorithm must be used twice since iterative improvement requires two solutions of the 
second-order accurate scheme. 

9. This scheme is the same as scheme eight except the single-cycle sweep of scheme seven 
is used for each solution required by iterative improvement. 

10. This is similar to scheme eight except that a different fixed cycle suggested by Brandt 
was used. Note that iterative improvement without 7-extrapolation is used here. The same 
FMG algorithm is used starting with the second level k = 2. At each higher level ( k  > 2) a 
double cycle is used. As before, cubic interpolation from the next lower level is used to 
initialize the double cycle. The cycle is given below for k = 5.  

2*5 ,2*4 ,2*3 ,2*2 ,4*1 ,3*2 ,1*4 ,2*2 ,3*3 ,2*2 ,4*1 ,  
2 * 2,2 * 3,3 *4, 2 * 3,2 * 2,4 * 1,2 * 2,2 * 3,2 *4 ,1*  5 
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This iteration moves from the finest level down to level one, then moves back up in steps. In 
moving up, when a level is reached for the first time, the iteration then drops to level one 
before starting back up. Approximately 5.8 work units are required per cycle. The cycle can 
also be described by the following pseudo program. 

LB = K 

- For K K  = 2 upto K 

For L = LB downto 1 - 
perform re laxa t ion(s )  on level L; 

__ I f L > l r n  

Project to  level L - 1  

Endfor; 

- For L = 2 upto KK 

In jec t  from level L-1 to  L; 

Perform re laxa t ion(s )  on level I. 

Endfor; 

LB = KK 

Endfor 

11. This is the same as scheme ten except that a single cycle is used in place of the double 
cycle. Iterative improvement without 7-extrapolation is again used. 

RESULTS FOR MODEL PROBLEMS 

The results for these nine schemes are shown in Table I. The rows represent three test cases. 
The first is a non-separable problem with diffusion coefficient u = exp (-x - y). The next two 
are taken from Dinar's thesis.' We have used essentially the same multigrid schemes, except 
that we have extended his results to use six-point interpolation and we have used iterative 
improvement. Dinar's result for the maximum norm on level M for test case 2, scheme 6 is 
2.2E-3 which is the same as our value 2.19E-3. Dinar's double cycle is the following 

2 *4,2 * 3,2 * 2,4 * 1,1*  2 , l  * 3, 
2 *4,2 * 3,2 *2 ,4  * 1,2 * 2,2 * 3,2 * 2,4 * 1,1*  2,1* 3 ,1*4  

This is slightly different than ours, however the results do not differ in a significant way. 
Dinar gives the maximum norm error on the level two mesh using his double cycle with 
7-extrapolation. His value for our case 2 is 7.OE-4 which compares with our value 7-1E-4. 
For h = 1/16 his value is 4.4E-5 and ours is 4.7OE-5. 

The second cycling algorithm did not have much effect on the accuracy of iterative 
improvement as is seen in a comparison of columns 8 and 9 with columns 10 and 11 in Table 
I. There was also little difference in the results obtained from the two cycling algorithms 
when 7-extrapolation was used. 

- 

The iterative improvement correction is obtained by solving the equation 

LMvM = rM + rM - LyuM. 
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I 2  16 24 32  48  64 
10-8 

h" 
Figure 1. Error for case 1 of Table I. Curve @ second-order 
scheme, Q 7-extrapolation, @ iterative improvement. L, 

error 

We also tried using the correction term LMuM - L?uM in place of rM - L?uM. This altered 
correction term caused the error to increase by about a factor of ten, unless we used more 
relaxation sweeps in the multigrid iteration so that the residue LMuM - rM was reduced. 
Obviously, if the residue is taken to zero the two correction terms are equivalent. Therefore, 
the first correction term, rM - LyuM, appears to be superior. 

In Figure 1 the L2 error is plotted for three schemes applied to the first case of Table I. 
Here cr = exp (-x - y) and u =sin v(x t y) is the solution (see equation (1)). The resolution 
varies from h = 1/12 to h = 1/64. This plot uses a log-log scaling. The second-order solution 
was obtained using the single-cycle multigrid iteration of scheme 7 except without r- 
extrapolation. The 7-extrapolation was obtained with the double cycle scheme 3 and 
iterative improvement with the double cycle of scheme 8. If a line is determined by the 
second-order error at h = 1/12 and h = 1/64, then the slope is 1.99. The line determined by 
the iterative improvement error at the same points is 3.74. The 7-extrapolation curve is not 
quite so linear and yields a larger error than iterative improvement. The iterative improve- 
ment requires twice as much computing time as r-extrapolation, but the improvement in 
accuracy more than justifies the increased cost, at least for this problem. 

A comparison of the error measured using the maximum norm with that using the L2 
norm is given in Figure 2. The curves whose points are marked by 0 and @ were obtained 
using iterative improvement with the double cycle iteration. The results in this figure are also 
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ITERATIVE 
IMPROVEMENT 
MAX NORM 

ITERATIVE 
IMPROVEMENT 
L2 NORM 

T - EXTRAPOLATION 
M - I  MESH LEVEL 
MAX NORM 

Figure 2. Error for case 1 of Table I. 0 iterative im- 
provement, maximum norm. X 7-extrapolation, max- 
imum norm on M-1 mesh level. 0 iterative improve- 

ment, L, norm 

for the first test case of Table I. The points marked x in Figure 2 give the maximum norm 
error for 7-extrapolation using the double cycle iteration. Note that 7-extrapolation yields a 
fourth-order solution only on the M-1 mesh level. To obtain a higher order solution we 
used six-point interpolation from the M -  1 level to the M level. The intermediate solution 
which is obtained by relaxation on the M level during the double cycle iteration is used only 
to improve the M-1 level solution and define the correction in the 7-extrapolation. After 
the six-point interpolation there is no relaxation smoothing performed on the M level. The 
‘ X ’ point in Figure 2 at l /h  = 32 gives the error llu’-l - Ullm/llU/lm on the M -  1 level where 
the fine mesh ( M  level) resolution is l/hM = 64. Thus the maximum norm error in 7- 
extrapolation on the M-1 level agrees well with L2 norm error in iterative improvement 
provided 7-extrapolation at l /hhPl  is compared with iterative improvement at l/hh, that is 
hh-, = hL. Note that the 7-extrapolation error curve is linear (on a log-log scale) provided 
the error is measured on the M -  1 level. On the M level, the 7-extrapolation curve, even in 
the L2 norm, is not linear. This leads to the conclusion that the extrapolation from mesh 
level M -  1 to level M is the weak link in the 7-extrapolation. 

The next comparison concerns problems whose solution is not smooth, that is, one whose 
lower order derivatives are not continuous. We can compare iterative improvement to 
7-extrapolation by application to the two-point boundary value problem 

d2u d X 2  = dx) 

The 7-extrapolation correction to the M-I level mesh can be written 
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The method of deferred corrections requires the addition of an approximation to this fourth 
derivative to the right side of the second-order difference equation.6 Therefore, T- 
extrapolation and deferred corrections seem to be the same in this case, except the former 
applies the correction only to the M -  1 level mesh. This correction term is a second-order 
approximation to a fourth derivative. By comparison, iterative improvement uses a fourth- 
order approximation to a second de r i~a t ive .~  

This term has the following form 

-(-u?2+ 16uy1-3O~y+ 16uEI- UE2)/24hL 

We do not have any theory to show which of these corrections is less affected by 
discontinuous derivatives in the solution. However, our computational results seem to 
indicate that .r-extrapolation is superior to iterative improvement. 

Our test case when non-smooth derivatives is the same as that used by Haidvogel and 
Zang.’ The Poisson equation with zero boundary values is solved on a rectangle. 

u, + u y y  = 4x9 Y) - 1 5 x 5 1  
- 1 s y s l  

u=O for I x \ = l  or Iyl= 1 

The solution is the following piecewise polynomial 

u (x, Y = V(X> V(Y> 

(4) 

V(s) = { b ( s  + l )  s < t  

s 2 t (s - l)(s + u)/2 

Here t is a small positive input parameter and 

a =(1-2t-t2)/2 
6 = t + ( U  - 1)/2 

The forcing function is 

where 
s < t  

1 s r t  
H ( s )  = { O 

The second derivative of the solution is discontinuous along the lines x =  t and y =  t. 
Haidvogel and Zang used the value t = h/2 where h is the mesh spacing. In one case they 

Table 11. Max norm relative error for equation (4) 

T -extrapolation 
Single Scheme 3. Iterative 
cycle. .r-extrapolation Error on mesh improvement 

t = h/4 t = h/4 t x hl4 t = h/4 
Scheme 7.  Scheme 7. Scheme 3. level M- 1. Scheme 8. 

__ - - 8 2.80E-2 1.22E-1 
16 6.17E-3 6.05E-2 3.26E-2 1 *60E-3 5.83E-2 
32 1.58E-3 2.97E-2 1.28E-2 7.86E-4 2.93E-2 
64 3.92E-4 1.48E-2 5.62E-3 3.90E-4 1.47E-2 
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Table 111. Solution time in seconds for equation (4) 

Double 
Single Double cycle 
cycle cycle Direct Scheme 3 

Scheme 7 Scheme 3 solver CDC-6400 
DEC-KL10 DEC-KL10 DEC-KL10 0-N) 

h -‘ = 16 0-25 0.42 0.15 __ 
h-’ = 32 0.96 1.7 0.79 2.6 
h-‘ = 64 3.94 6.8 3.85 - 

used a fast direct method to solve the linear equations obtained from a second-order 
difference scheme. In this case they obtained second-order convergence. We obtained 
essentially the same results for this case. However, when we used t =  h/4 so that the 
discontinuity does not fall in the middle of mesh cells, then the convergence was only first 
order in the mesh spacing. The results are shown in Table TI. Note that .r-extrapolation did 
yield some improvement, however, it also appears to be only first-order accurate. Also note 
that .r-extrapolation was again much better on the M-1 mesh which indicates that the 
six-point interpolation from level M -  1 to level M is the major problem here, as one would 
expect. Iterative improvement did very poorly. 

In Table TIT a comparison of solution times is given. The direct solution was obtained from 
the SEPELI code written by John Adams at the National Center for Atmospheric Research. 
The SEPELI code can only be used for elliptic problems with separable coefficients. This 
code is a fast direct method based on factorization. This method is more general than most 
direct solvers, and is therefore somewhat slower. The multigrid method seems to compare 
quite well with this direct method. 

The results in Tables I and I1 were obtained on a DEC KL10. The results in Figures 1 and 
2 were obtained on a CDC 6400, since these results required higher precision than that 
provided by single precision 36 bit words. 

APPLICATION TO A GEOTHERMAL MODEL 

This model describes saturated single phase fluid flow in a porous medium which is heated 
from below. We restrict our model to a rectangular domain with no flow through the 
boundary, temperature specified at the top and bottom (y  = -1, y = O), and non-heat 
conducting sides (x = 0, x = 1). The model is described more completely in an earlier paper.4 
The equations (2) are written for a stream function $(x, y)  and the deviation 8(x, y)  in the 
temperature from the linear, steady state, zero flow conduction solution. The previous paper4 
assumed a viscosity independent of temperature so that the coefficient a(x, y)  in the elliptic 
equation for the stream function was a constant (we assume the permeability is constant). In 
this paper we use a temperature dependent viscosity so that this coefficient is a function of 8. 
This makes direct methods or iterative methods which require an expensive ‘pre condition- 
ing’ either inapplicable or expensive. Therefore, we have used the multigrid method, 
although an ICCG method might have done just as well. 

The dependence of the coefficient (T on temperature is given by the relation 
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where AT = T(-1) - T(0) is the temperature difference between the top and bottom and the 
constants a, have the values u3 = 3.17E-4 and u2 = 2.56E-6. The results are evaluated by 
inspection of the contour plots of @(x, y)  and +(x, y) and also by comparison of the Nusselt 
number, denoted by Nu. This number is the ratio of the total heat transmission to that 
transmitted by conduction alone. Its definition is 

Nu (Y, t )  = 1 - E @ y ( ~ ,  Y, f )  +Ra Nx, Y, t)+x(x, Y, t>l dx 6‘ 
Our main objective here is not an evaluation of the accuracy and efficiency of the overall 
method used to solve the geothermal problem for @(x, y) and +(x, y). Instead we show that 
the results obtained from the multigrid method appear to converge with the mesh spacing for 
a Rayleigh number low enough to yield steady state solutions. The oscillatory solutions 
obtained at higher Rayleigh numbers are more difficult to check due to the expense of 
running the finer resolution cases (33 x 33 or 49 x 49 grids) at the small time steps required. 
However, we will show that the ‘cycling’ method (case 2 of Table I) gives the same result as 
the ‘FAS’ method (case 8 of Table I) for a single oscillatory case (Ra = 86.08) on  a 33 x 33 
grid. 

In Table IV results for a steady state case are shown. The Rayleigh number is Ra = 64.56, 
which is six times the ‘critical Rayleigh number’ as computed by Zabib and Kassoy.” The 
integrals required for the table are approximated by Simpson’s method. The computing time 
refers to the CPU time in seconds required to solve the elliptic equation for the stream 
function +(x, y)  on a CDC 6400. The fourth-order calculations should require slightly more 
than twice as long as the second order. The FAS algorithm based on the second cycling 
algorithm used for column 10 of Table I is also used here. Iterative improvement is used to 
obtain fourth-order accuracy for the stream function. A fourth-order AD1 scheme based on 
five-point approximations for the derivatives is used for the temperature e q ~ a t i o n . ~  

If the convergence is sufficiently smooth we could use Richardson extrapolation to 
improve the accuracy of the results given in Table IV. If f(h) is the quantity computed using 
a second-order scheme we may assume f(h)=f(0)+ch2. Using the pairs (1/16,1/32), 
(1/24,1/32) and (1/32,1/48) for (h,, h,) we can estimate c from the equation 

Table IV. Steady state solutions of equations (2) for Ra = 64.56, AT = 200” 

Second-order scheme 

CPU time for 
JI on one time step 

16 3.8655 0-083062 0-94 
24 3.84383 0.0853539 2.1 
32 3.83894 0-0860060 4.0 
48 3.83755 0.0864684 9.0 

Fourth-order scheme 

16 3.8217 0.08477 5 
24 3.84680 0.0857457 
32 3.84400 0.0862337 
48 3-84073 0.0865472 

1.9 
4.4 
8.4 

19.0 
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With f(h) given by the integral of the temperature field in Table IV, the values for these 
pairs are (-1.05, -0.85, -0.85). For the integral of the Nusselt number the three estimated 
values of c are (10.0,6.4,2.6). Thus Richardson extrapolation for the integral of 8 gives a 
correction ch2 = 3.7B-4 and an extrapolated value of 0.086830. The correction is probably 
accurate to 20 per cent which would give an error in the extrapolated value of 7.0E-5. 
However, it is impossible to extrapolate the integral of the Nusselt number with this data. It 
is also impossible to extrapolate the data from the fourth-order accurate calculations since 
the estimated values of the coeffcient c do not agree in the first digit. If we take the 
extrapolated value of 0.08683 It 0.00007 as the correct value, then the second-order scheme 
using N = 48 gives a more accurate result than the fourth-order scheme with N = 32 and the 
two schemes require about the same computer time. These results do not show any 
advantage in the use of the fourth-order scheme. In the constant viscosity case, our previous 
paper4 did indicate some advantage in the use of a fourth-order scheme. 

Calculations were also made at a higher Rayleigh number, namely Ra = 86.08 which is 
eight times the critical value. Here also AT = 200". In this case a steady state solution is not 
obtained, instead there is an oscillation in time which appears to consist mainly of a single 
harmonic, at least in the Nusselt number. The period of this oscillation measured in the 
Nusselt number is about 1.5 time units. 

To test the effect of the multigrid-iterative improvement method used to solve for the 
stream function +(x, y)  we compared the results for the fixed iteration used to obtain column 
10 in Table I with the dynamic scheme used to obtain column two. In the latter scheme the 
multigrid iteration is continued until the residue on the fine mesh is less than an input 
tolerance E. These comparisons were made with temperature difference AT = 200", Rayleigh 
number Ra = 86.08, time step At = 0.05, mesh spacing N = h - l =  32. To obtain uniform 
initial values a run was made with At  = 0.1 until the oscillation had settled down to a fairly 
uniform harmonic. The temperature field 8(x, y)  was saved on a file and used to restart the 
computation based on a fixed iteration and also those based on the dynamic iteration using 
various values of E. The comparisons were run over 10 time units, 0 5 t C= 10.0. The period of 
the oscillation is about 1.5. The comparison can be based on the instantaneous value of the 
integral of the temperature perturbation O(x, y)  or the integral of the stream function +(x, y) 
at the end of the integration, or perhaps better on the amplitude of the oscillation in the 
O(x, y) or +(x, y) fields or in the integral of the Nusselt number. Note that the maximum 
value of 8 is around 0-6 and the maximum of the stream function over the grid is around 
0-15. The results in Table V indicate that the fixed multigrid iteration is sufficiently accurate. 
There appears to be little difference between the results for F = 0.001 and the fixed iteration. 
The change in the results caused by an increase in the time step from 0.50 to 0.1 or in the 
grid resolution from N = 16 to N = 32 is much greater. 

These oscillation amplitudes were obtained by saving, at each grid point, a 'running' 
minimum and maximum value of 8 and + over a time interval of length two. Then the 
amplitude at each grid point is Om,,- Om,,. The maximum amplitude is then obtained over the 
entire grid. 

By running experiments on an oscillatory case with various time steps At  and various grid 
resolutions N we can gain some idea of the accuracy of the integration, which allows a rough 
comparison between the second- and fourth-order methods. These cases were also run at 
Rayleigh number Ra=86.08 and temperature difference AT=200". A run was made at 
N = 16 until a steady oscillation was obtained, then the temperature field was saved. This 
field was used to start the runs for N =  16 which used the different time steps. A similar 
method was used for the cases with N = 32. The period of the oscillation is about 1.5, and in 
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Table V. Dependence of the oscillation on the accuracy of the iteration. Here N = h-' = 
32, A T  = 200", Ra = 86.08, A t  = 0.05, t = 10.0 

Oscillation Oscillation 
amplitude amplitude 

in in 

Fixed multigrid- 
iterative improve- 
ment 0.2471 0-2406 0.07676 0.04559 

E =tolerance for 

E =0*001 0.2474 0.2405 0.07669 0.045560 
E = 0.004 0.2482 0.2389 0.07660 0.04562 
E = 0.02 0-2577 0.2261 0.07677 0.04544 

residue 

each case the amplitude was reasonably constant after the first cycle, that is for 2 5  t I 10. 
The maximum Nusselt number measured at the top ( z  = 0) varied in the range 4.4445 
Max (Nu (t ,  0)) I 4.460 and the minimum 4.292 s Min (Nu ( t ,  0) 5 4-302. This variation was 
taken in the interval 2 5 t 5 10. 

The amplitude of the oscillation in the temperature perturbation 0(x, y)  and the amplitude 
of the oscillation in the integral of the Nusselt number J Nu dy were measured and are given 
in Table VI. These results again show little improvement in the fourth-order results over the 
second order. At N= 16 the results are rather poor, if we assume the N= 32 results are 
reasonably accurate. The good agreement between the second- and fourth-order results at 
N = 3 2  would lead us to this latter conclusion. Note that the maximum value of the 
temperature perturbation O(x, y)  over the grid is around 0.6 and the average (in time) of the 
integral of the Nusselt number is around 4.45. Thus, the relative oscillation amplitude in the 
Nusselt number is much smaller than that in the temperature perturbation 0(x, y). 

Another check on the accuracy of the integration is obtained from a comparison of the 
Nusselt number oscillations measured at the top and bottom. If the temperature equation is 

Table VI. Dependence of an oscillatory case (Ra = 86.08, A T  = 200") on time step At 
and grid resolution N = h-' 

~ ~ 

Second order Fourth order 

Oscillation Oscillation Oscillation Oscillation 
amplitude amplitude amplitude amplitude 

in in in in 

16 0.1 0-32 0.47 0.20 0.27 
0.05 0.31 0-44 0.17 0.22 
0.25 0.30 0-44 0.15 0.20 

32 0.1 0.27 0.33 0.27 0-29 
0.05 0.26 0.28 0.25 0.24 
0.025 0.26 0.28 0.24 0-23 
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integrated over space and time the following relation is obtained 

=~t+p[6y(t ,x,0)dxdt- lt+p[Oy(y, x, -1) dx dt 

If the time dependence is periodic with period P, then this relation implies that the average 
Nusselt number taken over the period should be the same at the top and bottom of the 
domain. For N = 32, AT = 200°, At = 0.025, R = 86.08, the average Nusselt number at the 
top is 

1 t+P 

p NU ( t ,  -1) dt = 4-52 

compared to 4.45 at the bottom. This large discrepancy is probably due to the one sided 
derivatives used to compute 0, at the vertical boundaries. A graph of the Nusselt number at 
the bottom, Nu ( t ,  -l), at the top, Nu (t, 0), and the integral Nu ( t ,  y) dy is given in Figure 
3 for the interval 9 4 S t S 9 8 .  This was obtained using N=32, At =0.025, AT=20O0, 
Ra= 86.08. The average value of the T(t, x, y) field is given in Figure 4 (T(t, x, y) = -z + 
O(t ,  x, y)). These average values are defined by 

T,,(t,, x, y) = 0.5*[ min T(t, x, y) + max T(t, x, y )]. 
t ,--PSt c to t o - - P c t c t o  

I I I I 1 

Nu 

4.5 

4 . 3  

4.1 

94. 96. 98. 

Figure 3. Nusselt numbers for 9 4 5  r 598 ,  N= 32, AT= 200", Ra = 
86.08, At =0.025. - integral r1Nu(r,  z)dt. --- value at the top 

Nu (t, 0). -- value at the bottom Nu (r, -1) 
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0.0 

-0.5 

Y 

-1.0 

0.0 x 0.5 1.0 

Figure 4. Average temperature Tav(x, y) for 96 I t I 98, N = 32, AT = 200°, 
Ra= 86-08, At = 0.025. Contour interval = 0.12 

0. x 0.5 1.0 

Figure 5. Temperature oscillation Tos,(x, y), for same case as Figure 4. 
Contour interval = 0.03 
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The oscillation amplitude for T(t, x, y) is given in Figure 5 ,  and is defined by 

Tos,(~,, x, Y) = max TO, x, Y)- min T(t, x, Y). 
t , - -PStSt ,  t , - P S t ~ t ,  

For these results the time interval P = 2 was used. 
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APPENDIX 

Symbols 

f 
h 
H 
Lk 
M k  
N 
Nu 
P 
r 
Ra 
t 
T 

U 

V 

Y 

0 
J, 

U 

21 

X 

0- 

7 
& 

At 
AT 

right side of difference equation 
mesh spacing 
function used to define test case 
finite difference operator 
k-level grid 
number of mesh intervals 
Nusselt number 
period of oscillation 
right side of elliptic equation 
Rayleigh number 
time 
temperature 
elliptic grid function 
elliptic variable 
elliptic grid function 
function used to define test case 
horizontal co-ordinate 
vertical co-ordinate 
diffusion coefficient 
temperature perturbation 
stream function for geothermal model 
‘tau extrapolation’ correction 
tolerance used for multigrid 
time step 
temperature interval used for viscosity 
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